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Abstract 

Signal compression is an important study in the electrocardiogram (ECG) signal analysissince ECG signals 

require a long time measurement. Linear approximation shows a high signal compression rate, and is efficient 

in detecting ambiguous fiducial points. Existing research improved the execution time to enable real-time 

linear approximation, but the existing algorithm selected the number of vertices arbitrarily. Thus, the existing 

linear approximation does not guarantee that the conditions of compression ratio (CR) or reconstruction 

errormeasured by percentage root-mean-square difference (PRD) will be satisfied. In this study, we improve 

the algorithm to enable a linear approximation based onthespecified CR or PRD. We propose a quantitative 

approach to determinethe optimal number of vertices that satisfiesthe specified CR through inverse 

computation. Additionally, we extend the cost matrix in advance and select the optimal number of vertices in 

a look-ahead method, thereby performing signal compression according to the PRD. From experimental 

results, we confirmed an average PRD of 0.78% in the given CR of 10:1, and an average CR of 12.7:1 in the 

given PRD of 2%. 

 

Keywords 

ECG, Signal Compression, Linear Approximation, Signal Reconstruction, Compression Ratio, Percentage 

Root-Mean-Square Difference 

 

 

1. Introduction 

Bio-signalsare widely used for healthcare, security, human activity, and so on [1,2]. A health 

monitoring system acquires and transmits signals, detects abnormal signals, and performsreal-time 

health checks on the user [3, 4]. The electrocardiogram (ECG) signal is one of the representative bio-

signals used for early heart disease diagnosis, and bio-signal monitoring research on the ECG signal is 

being actively conducted as the mortality rate from heart disease rises [5ï8]. 

ECG signal analysis examinesthe types and frequency of rarely occurringabnormal beats. Therefore, 

a long time measurement is necessaryfor accurate ECG signal analysis, and accordingly, a signal 

compression method must effectively store a signal. Particularly, an ECG signal compression method 
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suitable for embedded devices is required for real-time transmission of the obtainedECG signals. 

Linear approximation is a time-domain signal compression that approximates a signal with a few 

vertices [9]. In the linear approximation, a curvature-based linear approximation step [10] obtains the 

initial vertices for each signal separated by RR interval, and a sequential linear approximation step [11] 

obtains additional vertices within the initial vertices. Further, dynamic programming [12] optimizes the 

approximation error (or reconstruction error) globally. The linear approximation has a problem in that 

its complexity increases exponentially with the signal length and the number of vertices in the 

optimization step. Leeand his colleagues [13,14] optimized the size and operation area of the cost and 

base matrix used in dynamic programming and improved the algorithm to enable real-time processing. 

These methods enable effective linear approximation, but cannot achieve signal compression that 

satisfies the given compression ratio (CR) or reconstruction error, measured by the percentage root-

mean-square difference (PRD) because the number of vertices is arbitrarily selected. 

This study investigates the optimal number of vertices for signal compression based on a specified 

CR or PRD in linear approximation. The minimum number of vertices that satisfies the specified signal 

CR can be obtained by inverse calculation since CR depends on the number of vertices. Therefore, we 

can skip the initial and additional vertex selection steps of the existing linear approximation, and 

proceed directly with the linear approximation based on to the obtained minimum number of vertices 

using dynamic programming. 

We can measure the PRD after the approximation is completed. Therefore, we must repeat the 

process of measuring the PRD by increasing the number of vertices until the measured PRD satisfies 

the specified PRD. We can reduce the number of computationssince dynamic programming minimizes 

redundant computation via memoization. However, the cost matrix increases gradually during the 

iteration. Additionally, dynamic programming calculates the cost matrix by column-wise operation, but 

the row of the cost matrix increases during the iteration. In this study, we prevent dynamic allocation of 

the cost matrix and perform a stable column-wise operation by generating an expanded cost matrix in a 

look-ahead method. 

Fig. 1 shows the proposed algorithm flow compared with the existing linear approximation. 

This paper is organized as follows. Section 2 introduces the composition of ECG signals. Section 3 

introduces the process of linear approximation in detail. Section 4 introduces improved linear 

approximation based on the specified CR or PRD. In Section 5, we confirm the performance of the 

proposed method through an experiment, and the conclusion is presented in Section 6. 

 

 
Fig. 1. Proposed algorithm flow. 
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2. Electrocardiogram Signal 
 

In the atrium and ventricular depolarization and repolarization processes, the P-wave, QRS complex, 

and T-wave are measured in the ECG signal [15]. The feature values of each waveform are obtained 

using the intervals, segments, and amplitude difference between the fiducial points. 

Fig. 2 shows the composition of the fiducial points and feature values of the ECG signal. 

 

 

Fig. 2. The composition of fiducial points and features of the ECG signal. 

 

Among fiducial points, the R-peak has the highest amplitude value. Therefore, R-peak detection is 

relatively easy and can be accomplished accurately through post-processing correction [16, 17]. Based 

on these characteristics, the R-peak becomes a criterion for classifying beats, and is used for detecting 

other fiducial points. 

Each beat is classified through the R-peak, and two methods are used to separate the beats. The first 

method divides the beats into the region of 275 ms before and 375 ms after the R-peak [18]. This region 

includes the P-wave, QRS complex, and T-wave, which are mainly used for ECG signal analysis; 

however, some data samples are missing. The RR interval is used to divide the beats in the second 

method. This minimizes the approximation error by approximating all data. Fig. 3 shows the two beat 

separation methods. 

In this study, we separate the beats according to the RR interval as shown in Fig.3(b). 

 

  
(a) (b) 

Fig. 3. The two beat-separation methods: (a) centering on the R-peak and (b) RR interval. 

 

3. Existing Linear Approximation  
 

Fig. 4 shows the concept for linear approximation. 
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Fig. 4. Illustration of linear approximation: (a) the existing method, (b) linear approximation. 

 

Detection of the fiducial points such as the onset or offset is difficult because the fiducial points do 

not have a maximum or minimum amplitude(Fig.4(a)). Additionally, it is ambiguous to select a fiducial 

point because the samples around fiducial points have similar feature values. 

However, the linear approximation has the advantage of representing the fiducial point corresponding 

to the boundary between the waveform region with a large amplitude change and the baseline region 

with a small amplitude change as a vertex because it represents a signal with fewvertices(Fig. 4(b)). 

Additionally, it is possible to emphasize the feature values of the vertices by representing them as a few 

vertices. 

The input signal is divided into RR intervals based on R-peak detection, and an independent linear 

approximation is performed for each beat. The linear approximation proposed by Lee et al. [9] proceeds 

in three stages: the initial vertex selection, additional vertex selection, and error optimization. Lee and 

colleagues [13, 14] also improved dynamic programming used in the optimization step based on the 

ECG signalôs characteristics. 

 

3.1Initial Vertex Selection 
 

First, a point with a large curvature is obtained as an initial vertex using curvature-based linear 

approximation [10]. The curvature is the amount by which a curve deviates from being a straight line 

and it is calculated by using the included angle between the three points as (1): 

 

ὣ;ὢ,ὤ =
ὥᴆ× ὧᴆ

ȿὥᴆȿ
=
ὼ1 ᾀ1 ὼ2 ώ2 ὼ2 ᾀ2 ὼ1 ώ1

ὼ1 ᾀ1 + ὼ2 ᾀ2
2

, ὼ1 > ώ1 > ᾀ1 (1) 

 

Fig. 5 shows the concept of the curvature calculation process and an example of the approximated 

signal. 

In dynamic programming, complexity increases exponentially with the signal length and the number 

of vertices. The initial vertex selection can reduce the complexity by dividing the RR interval into 

several sub-intervals. 

 

3.2 Additional Vertex Selection 
 

Curvature-based linear approximation satisfactorily expresses a fiducial point as an initial vertex 

(a) (b)
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because it is a point with a large curvature. However, if the waveformôs amplitude change is small, it 

may not be captured as the initial vertex, as shown in QRS-onset and P-offset in Fig. 5(b). To correct 

this, additional vertices are obtained using sequential linear approximation for the inside of each initial 

vertex [11].  

 

 

 
(a) (b) 

Fig. 5. The curvature-based linear approximation: (a) concept of curvature and 

(b) an example of the method. 

 

Fig. 6 shows the concept of the sequential linear approximation process and an example of the 

approximated signal of Fig. 5(b). 

Fig. 6(a) shows that a vertex is added when the error exceeds the threshold Ὀάὥὼ and the signal was 

effectively approximated as shown in Fig. 6(b). 

 

 

 
(a) (b) 

Fig. 6. Sequential linear approximation: (a) concept of method and  

(b) approximation result of Fig. 5(b). 

 

The approximation result depends on the number of vertices because dynamic programming 

optimizes the vertices globally. Thus, the additional vertex selection appropriately selects the number of 

vertices for dynamic programming.  

 

3.3 Error optimization  

Global error optimization calculates the costs for all cases, and detects the minimum case as an 

optimization result. Therefore, the problem of optimizing the position of ὔ vertices for ὒ samples has a 

complexity of ὕὒὔ . Dynamic programming [12] is a global optimization technique in which the 

optimal path between two points is optimized as the global optimal path between any two points on the 

global path using Bellmanôs optimal principle. The recursive approach simplifies and optimizes the 

ὢ

ὣὤ
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problem, particularly using memoization to remember the computational results, which eliminates 

redundant operations. Dynamic programming enables high-speed global optimization but requires 

additional memory for memoization, which consisting of cost and base matrices. Thus, the size of the 

cost and base matrices required for memoization isὕὒ2ὔ . 

Fig. 7 shows the cost and base matrices used for memoization of dynamic programming. 

 

 
Fig. 7. The cost and base matrices, which are used for the memoization of dynamic programming. 

 

 

For a signal of length ὒ, the optimization of the partial signal from Ὥ to Ὦ, including the Ὧ vertices, is 

recursively calculated as (2): 

 

ὅὯὭ,Ὦ= άὭὲ
ὺὯ ɴ  [1,Ễ,ὒ]

ὅὯ 1 Ὥ,ὺὯ + ὅ0 ὺὯ,Ὦ , (2) 

 

where ὺὯdenotes the position of the ὯὸὬ vertex, and when Ὧ is 0, ὅ0 Ὥ,Ὦ is calculated as an error 

between the input signal and the line connecting the ὭὸὬ and ὮὸὬ sample.In this study, we calculate the 

error as the length of the perpendicular lineas shown in Fig. 6(a) because it is effective in 

approximating the QRS complex with rapid amplitude change. 

Fig. 8 shows the results of optimization using the dynamic programming shown in Fig. 6(b). 

The signal is well represented with few vertices, and dynamic programming minimizes the 

reconstruction error. 

 

 
Fig. 8. Optimization results of Fig. 6(b). 

 

3.4 Optimization of Dynamic Programming 
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Lee et al. [13] optimized the calculation of the cost and base matrices based on the ECG signalôs 

characteristics, thereby improving the performance and enabling real-time operation even in embedded 

devices. 

Fig. 9 shows the improvements of the spatial and time complexity of the cost and base matrices used 

in dynamic programming. 

The following is a detailed description of each step of Fig. 9. 

 

 

Fig. 9. Summary of the dynamic programming improvement process. 

 

3.4.1 Improvement based on characteristics of ECG signals 

Characteristic 1 

The cost and base matrices are symmetric because the approximation error of the ECG signal is not 

affected by the measurement direction. 

 

Characteristic 2 

The verticesô time information has a monotonic increasing property because each vertex of the ECG 

signal is selected according to the passage of time. 

 

Improvements 

The first and last vertices are fixed as initial vertices corresponding to both ends of the input signal. 

Therefore, Ὥ always becomes 1 in ὅὯ(Ὥ,Ὦ)  of (2) and the existing cost matrix,ὅὯ(1,Ὦ),can be expressed 

as ὅ(Ὧ,Ὦ) , as shown in (3): 

 

ὅὯ,Ὦ= άὭὲ
1 <ὺὯ<  Ὦ

ὅὯ 1,ὺὯ + ὅ0 ὺὯ,Ὦ  (3) 

 

By expressing ὅὯ(1,Ὦ)as ὅ(Ὧ,Ὦ) , the cost matrix of the size of ὕ(ὒ2ὔ)  is reduced to the size of 

ὕ(ὔὒ) . Thus, ὅ(ὔ,ὒ) is an optimized error value when ὔ additional vertices exist between the first 

sample and the ὒὸὬlast sample and it represents the dynamic programming result. Additionally, the 

existing dynamic programming method optimizes by performing calculations in a recursive, top-down 

method. However, improving the cost matrix fixes the area required for the calculation. Thus, it can be 

optimized through a bottom-up operation without a recursive approach. 

 

3.4.2 Add limit of the time difference between vertices 

Problem 

Many data bits are required to record the verticesô time information because the ECG signal is 

measured for a long time.  
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Improvement 

The amount of information is minimized by representing the vertex information as a time difference 

from the previous vertex. The maximum interval between the vertices is limited by the number of bits 

(ὔὄὭὸ= 25  in this study) used to indicate the time difference between the vertices.The cost matrix 

ὅ(Ὧ,Ὦ)  is calculated only when the interval between the ὯὸὬ vertex and the (Ὧ+ 1) th vertex does not 

exceed ὔὄὭὸ, as expressed by (4): 

 

ὅὯ,Ὦ= άὭὲ
ὺὯ+ 1 ὔὄὭὸ  ὺὯ<ὺὯ+ 1

ὅὯ 1,ὺὯ + ὅ0 ὺὯ,Ὦ  (4) 

 

The computation for the base matrix is reduced because the time difference between the two vertices 

is limited by ὔὄὭὸ. 

 

3.4.3 Row-wise operation 

Problem 

The first row of the cost matrix is calculated based on the result of the base matrix operation. 

Similarly, the Ὧ+ 1 ὸὬ row of the cost matrix is sequentially calculated using the ὯὸὬ row of the cost 

matrix and base matrixôs corresponding components.This row-wise operation requires a call to a large-

area base matrix, making it difficult to improve the base matrix.  

 

Improvement 

The called base matrix is sequentially termed column-by-column when each component of the cost 

matrix is calculated in a column-wise operation. That is, the ὮὸὬ column of the base matrix is used only 

in the calculation of the cost matrixôs ὮὸὬ column. Thus, the base matrix ὅ0 ὺὯ,Ὦ in (4) can be 

expressed as (5): 

 

ὅὯ,Ὦ= άὭὲ
ὺὯ+ 1 ὔὄὭὸ  ὺὯ<ὺὯ+ 1

ὅὯ 1,ὺὯ + ὅ0
Ὦ
ὺὯ ὺὯ+1 ὔὄὭὸ + 1  (5) 

 

As shown in (5), the memory usage of the base matrix,ὅ0
Ὦ
,can be overwritten by ὅ0

Ὦ+ 1
. Accordingly, 

the size of the base matrix can be minimized from ὕ(ὒ2)  to ὕ(ὔὄὭὸ)  in a column unit vector. 

 

4. Improved Linear Approximation  

 

4.1 Compression Ratio-Based Approximation 
 

For the input signal with length ὒ, CR of linear approximation with ὔὠ vertices can be calculated as 

(6): 

 

CR=
Ὕέὸὥὰ ὦὭὸ έὪ ὺὩὶὸὭὧὩί

Ὕέὸὥὰ ὦὭὸ έὪ ίὥάὴὰὩί
=
ὄὭὸὊὠ+ ὔὠ× (ὄὭὸὝ+ ὄὭὸὃ) 

ὒ× ὄὭὸὃ
 (6) 

 

where ὄὭὸὊὠ denotes the bits of the first vertexôs time information (64 bits in this study), ὄὭὸὝdenotes 

the threshold for the time difference between vertices (5 bits in this study),and ὄὭὸὃ denotes the 

resolution of the sampleôs amplitude (11 bits in this study). 

At this time,ὔὄὭὸ (2
ὄὭὸὝ= 32) restricts the time difference between vertices,and we can obtain the 

minimum number of vertices (ὔὓὭὲ) can be obtained as (7): 
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ὔὓὭὲ=  
ὒ

ὔὄὭὸ
 (7) 

 

If the CR whenὔὠ= ὔὓὭὲis less than the specified CR, we guarantee that thelinear approximation is 

possible to satisfy a given CR. Otherwise, the CR becomes the maximum when ὔὠ= ὔὓὭὲ. 

As shown in (6), we can estimate the CR by the number of vertices since the other variables are 

predefined constant values. Thus,we can obtain the minimum number of vertices (ὔὠ) to satisfy a 

specified CR by inverse calculation as (8): 

 

ὔὠ= max
ὅὙ× ὒ× ὄὭὸὃ ὄὭὸὊὠ

ὄὭὸὝ+ ὄὭὸὃ
,
ὒ

ὔὄὭὸ
 (8) 

 

Additionally, the first vertexôs time information is required only necessary for the first intervalôs 

linear approximation, and the given intervalôs first vertex coincides with the previous intervalôs last 

vertex. Thus, the ὔὠ after the first interval is calculated as (9): 

 

ὔὠ= max
ὅὙ× ὒ× ὄὭὸὃ
ὄὭὸὝ+ ὄὭὸὃ

+ 1 ,
ὒ

ὔὄὭὸ
 (9) 

 

The existing linear approximation proceeds with the initial vertex selection using curvature-based 

linear approximation, additional vertex selection using sequential linear approximation, and 

optimization using dynamic programming. The initial vertex selection divides the RR interval to reduce 

the number of computations, whereas the additional vertex selection is used to select the number of 

vertices.However, we improved dynamic programming to enable real-time calculation without splitting 

the RR interval based on the initial vertex selection, and the additional vertex selection is unnecessary 

because the number of vertices is determined by inverse calculation as shown in (9). 

Therefore, we can simplify the process of linear approximation according to CR in two steps: (i) 

selecting the number of vertices using (9) and (ii ) optimizing the vertices using dynamic programming. 

 

4.2 PRD-Based Approximation 
 

Unlike CR, calculating the number of vertices required to satisfy the PRD is challenging. The number 

of vertices used for linear approximation should be increased until the approximation satisfies the PRD. 

In the iteration process, the cost matrix size gradually increases according to the number of vertices. 

Fig. 10 shows the cost matrices according to the number of vertices. 

As shown in (7), we can obtain the minimum number of vertices (ὔὓὭὲ). From ὔὠ= ὔὓὭὲ, the ὔὠ 

increases by 1 until the PRD of ὔὠ optimized vertices satisfy the PRD condition (2% in this study). 

However, this iteration causes problems when implemented in low-capacity embedded devices 

because the cost matrixôs size continuously increases, requiring dynamic memory allocation. 

Additionally, it is inefficient to calculate the new row component of the extended cost matrix because 

Leeet al. [13]optimized the execution time by column-wise bottom-up operation. 

Therefore,instead of expanding and recalculating the cost matrix repeatedly, the cost matrixôs row 

sizewas expanded by ὔὓὥὼ, andall essential components were calculated as ὔὠ increases from ὔάὭὲ to 

ὔὓὥὼ(Fig. 10(d)).Then, the minimum number of optimal verticesthat satisfy the given PRD was 

determined. 

The average CR of beatsis about 10:1 to 12:1, butit decreases to about 3:1 to 5:1 when a sudden 

amplitude change occurs due to an abnormal beat or noise. Thus, we set the size of the extended cost 

matrix ὔὓὥὼto five times that of the ὔὓὭὲ. 
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Fig. 10. The size and calculation area of the cost matrix according to the number of vertices:  

(a) ὔὓὭὲ vertices, (b) ὔὓὭὲ+ 1 vertices, (c) ὔὓὥὼ vertices, and (d) the calculation area required  

from ὔὓὭὲ to ὔὓὥὼ vertices. 
 

5. Experiment 
 

We experimented using the Massachusetts Institute of Technology-Beth Israel Hospital Arrhythmia 

Database (MIT-BIH ADB) provided by PhysioNet [19]. The MIT-BIH ADB is a database composed of 

48 records obtained about 30 minuteslong with 360 Hz sampling frequency and 11 bits amplitude 

resolution. In the experiment, linear approximations according to CR and PRD are performed, 

respectively. We excluded datum 102, 104, 107, 113, and 217 which were measured using a pacemaker 

and the intervals in which R-peak detection was abnormally performed. Additionally, we used a 1ï25 

Hz band-pass filter for noise suppression, such as low-frequency baseline fluctuation and power supply 

noise of 30 and 60 Hz. 

 

5.1 PRDfor Linear Approximation  
 

To evaluate the experimental performance, we used PRD as (10): 

 

ὖὙὈ=
В Ὁὲ2ὒ
ὲ= 1

В ὕὲ2ὒ
ὲ= 1

× 100%,  Ὁὲ = ὕὲ ὅ[ὲ] (10) 

 

where ὕ[ὲ] and ὅ[ὲ] denote the input and reconstructed signal of the compressed signal, respectively, 

and Ὁ[n] denotes the PRD between two signals. 

However, the input signal requires removing the baseline movement or the DC component for 

reliable measurement because the average amplitude of the input signal has a great influence on the 

PRD. Therefore, we subtract the average value ὕ from the input signal ὕ[ὲ] as (11): 
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ὖὙὈ=
В Ὁὲ2ὒ
ὲ= 1

В (ὕὲ ὕ)2ὒ
ὲ= 1

× 100%,  Ὁὲ = ὕὲ ὅ[ὲ] (11) 

 

This is important in the ECG signal because the entire average of the signal can be removed as 0 

through preprocessing, but the local average of each beat may not be 0.Further, we propose correcting 

the measurement of the error Ὁ[ὲ]. The error is frequently measured in a region where the amplitude 

changes rapidly, such as in the QRS complex, despite being sufficiently approximated because the Ὁὲ 

measures the amplitude difference between two signals at the same time. This results in unnecessary 

iterations of compression, therebydecreasingCR. 

In this study, wecalculate the error as the length of the perpendicular line.The time scale of the x-axis 

and amplitude scale of the y-axis was used as mV and sec units, respectively. This is based on the 

average amplitude of R-peak and the RR interval of about 1mV and 1sec, respectively.Moreover,Ὁ[ὲ] 

using an error with ὅ[ὲ] has a low reliability for error measurement in the QRS complex which has 

large amplitude changes. Consequently, we proposed using the length of the perpendicular line as the 

error Ὁᴂ[ὲ]as expressed in(12): 

 

Ὁᴂὲ =
ὕὼὲ ὠὼὯ × ὠώὯ+ 1 ὕώὲ ὠὼὯ+ 1 ὕὼὲ × ὕώὲ ὠώὯ

ὠὼὯ+ 1 ὠὼὯ
2 + ὠώὯ+ 1 ὠώὯ

2
,

ὕὼὲᶰὠὼὯ,ὠὼὯ+ 1

 
(12

) 

 

where ὕὲ = ὕὼὲ,ὕώ[ὲ]  denotes the ὲὸὬ sample of the input signal includingthe interval between 

the ὯὸὬ  vertex and Ὧ+ 1th vertices,which representsὠ[Ὧ] = ὠὼὯ,ὠώ[Ὧ]  and ὠ[Ὧ+ 1] =

ὠὼὯ+ 1 ,ὠώ[Ὧ+ 1] , respectively. 

Thus, we can obtainthe PRDas (13): 

 

ὖὙὈ=
В Ὁᴂὲ2ὒ
ὲ= 1

В ὕὲ ὕ 2ὒ
ὲ= 1

× 100% (13) 

 

The quality of PRD is rated as 0%ï2%, implying very good, and 2%ï9%, implying good [20]. It is 

sufficient to compress the threshold of PRD to 9%, the upper limit of the good range because a similar 

rhythm or shape is repeated in the ECG signal. However, this study limits the threshold of the PRD to 

2% to provide more accurate diagnosis information since the abnormal beat contains important 

information for arrhythmia diagnosis. 

 

5.2Compression Ratio-Based Approximation 
 

Weselected the number of vertices according to the given CR using (9). Fig. 11 shows the result of 

the linear approximation of MIT-BIH ADB records when the given CR is 10:1. 

Fig. 11 represents the average and standard deviation of the PRD for each interval by the record. 

Additionally, the overall average of the PRDis 0.78%, implying an excellent performance. 
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Fig. 11. PRD distribution of linear approximation for each record of MIT-BIH ADB. 

 

5.3 PRD-Based Approximation 
 

In the proposed method, we generate the expanded cost matrix according to the specified PRD and 

then search the number of vertices that satisfy it. In this study, the specified PRD is 2%, the upper limit 

of the very good range.Fig. 12 shows the result of the linear approximation when the specified PRD is 

2%. 

As shown in Fig. 12, we confirmed a high CR on average (12.7:1). Particularly, the simpler the signal 

shape and the wider the RR interval, the higher the signal compression efficiency (20.73:1 maximum). 

In contrast, the higher the signal-to-noise ratio (SNR) and the shorter the RR interval, the lower the 

signal compression efficiency (2.98:1 minimum).  

 

 
Fig. 12. CR distribution of linear approximation for each record of MIT-BIH ADB. 

 

 

Fig. 13 compares datum 214 with the highest average CR (16.6:1) and datum 222 with the lowest 

average CR (6.9:1). 

As shown in Fig. 13(a), the simpler the signal, the higher the CR due to sufficient approximation with 

few vertices. However, in the case of Fig. 13(b), numerous vertices are required due to the high signal 

to noise ratio, resulting in a sharp decrease in CR. 

Table 1 shows the comparison result of CR and PRD with conventional algorithms 

By expressing the signal with few vertices, the proposed method not only facilitates the detection of 

the fiducial point, but also confirms that the CR is not inferior to conventional methods. 
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(a) (b) 

Fig. 13. The comparison of CR: (a) datum 214 and (b) datum 222. 

 

Table 1. Comparison of CR and PRD with conventional algorithms 

Algorithm  CR PRD (%)  

AZTEC [21] 10 28 

Turning point [22] 2 5.3 

Coordinate-reduction-time-encoding system [23] 4.8 7 

Fourier descriptors [24] 7.4 7 

Wavelet transform [25] 8 2.6 

Wavelet & SPIHT [26] 8 1.8 

B-spline approximation [27] 9.29 1.86 

Proposed method 12.7 2 

 10 0.78 

 

 

6. Conclusion 
 

In this study, we improved the linear approximation algorithm to enable compression signal based on 

specified CR or PRD. In the case of compression according to the specified CR of 10:1, the average 

PRD was 0.78%, which was in the very good PRD range. Further, compression based on the specified 

PRDof 2%, which was the upper limit of the very good range PRD, exhibited a high CR of 12.7:1 on 

average. 

The proposed method simplifies the algorithm because it removes the initial and additional vertex 

selection step and by inversely calculating the number of vertices according to the given CR or by 

sufficiently expanding the cost matrix and searching the minimum number of vertices that satisfy the 

given PRD. Particularly, stable real-time processing is possible because each interval measures CR and 

PRD independently. However, in the case of an interval with a high SNR, unnecessary vertices are 

required, which significantly lowers the CR. The local noise suppression filter according to interval 

may further improve the CR in future studies. Further, we expected that CR can be improved by 

studying a method that can compress the normal beats, which occupy most of the signal and are 

repeated periodically. 
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