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Abstract

Signal compression is an important studyttie electrocardiogram (ECG) signal analgsce ECG signas
require a long time measuremehinear approximation shows a high signal compression rate, affitisnt
in detecting ambiguous fiducial pointBxisting research improved the execution time to enabletireal
linear approximationbut the existingalgorithmselectedhe number of vertices arbitrarily. Thus, #dsting
linear approximatiordoes not guarantethat the conditions of compression ratio (CR) or reconstruction
errormeasured by percentage rowansquare difference (PRill be satisfied In thisstudy, we improve
the algorithm to enabla linear approximatiorbased othespecifiel CR or PRD. Weproposea quantitative
approach todetermin¢he optimal number of verticesthat satisfieshe specified CR through inerse
computation Additionally, we extend the cost matrix in advance aatbctthe optimal number of vertices in
a lookahead method, thereby performing signal compression according to theFr&D.experimental
results we confirmed an average PRIDO0.78% in the given CR of 10:1and an average C& 12.7:1in the
given PRD o2%.
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1. Introduction

Bio-signakare widely used for healthcare, security, human activity, and sdi¢). A health
monitoring systemacquires and transmits signals, detects abnormal signalspeafamseattime
healthchecls onthe user 3, 4]. The electrocardiogram (ECG)gnal is one of the representative-bio
signals used for early heart diseas&gnosis and biesignal monitoringesearch on the ECG signal is
being actively conducted as the mortality faten heart diseasgses[5i 8].

ECG signal analysisxaminethe types and frequency of rarelgcuringabnormal beats. Therefore,

a long time measurement igecessafpr accurate ECG signal analysis, and accordingly, a signal
compression methonhust effectivelystore a signalParticularly an ECG signal compressianethod
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suitable for embedded devices is required for-tiead transmission of thebtainedECG signals.

Linear approximation is a tirmdomain signal compression that approximates a signal with a few
vertices[9]. In the linear approximation, a curvatdvased linear approximation stgl0] obtains the
initial vertices for each signal separated by RR interval, and a sequential linear approximafibhj] step
obtains additional vertices withthe initial vertices.Further dynamic programminfl2] optimizes the
approximation error (or reconstruction error) globally. The linear approximation has a piokiiesn
its complexity increases exponentiallyith the signal length and the number of vertices in the
optimization step. Lesnd his colleaguell3,14] optimized the size and operation area of the cost and
base matrix used in dynamic programming and improved the algorithm to enakilsmesptocessing.
These methods enable effective linear approximation, but cannot achieve signal compression that
satisfiesthe given compression ratiodR) or reconstruction error, measured ttwe percentage root
meansquare differencéPRD) because the number of vertices is arbitraséiected

This study investigatethe optimal number of vertices for signal compressioesed on a specified
CR or PRD in linear approximatiothe minimum number of vertices that saiisfthe specifiedsignal
CR can be obtainebly inversecalculation sincéCR depends on the number of vertices. &fae, we
can skip the initial and additional vertex selecti@tepsof the existing linear approximation, and
proceeddirectly with the linear approximatiobased orto the obtained minimum number of vertices
using dynamic programming.

We can measure the PRD aftdre approximation is completed. Therefore, waist repeat the
process of measuring the PRD by increasing the number of vertices until the measured PRD satisfies
the specifiedPRD. We can reduce thimberof computatiossincedynamic programming minimizes
redundant computatiomia memoization. However, the cost matiixcreasesgradually during the
iteration.Additionally, dynamic programmingalculateghe cost matrix by columwise operation, but
the row of the cost matrix increases during the iteration. Irstbidy we prevent dynamic allocation of
the cost matrix and performstable columswise operatiorby generating an expanded cost matrix in a
look-ahead methad

Fig. 1 shows the proposed algorithm fleamparedwith the existing linear approximation.

This paper is organized as follows. Section 2 introduces the composition of ECG signals. Section 3
introduces the process of linear approximationdietail. Section 4 introduces improved linear
approximation based on tlepecified CR or PRD. In Section 5, we confirm the performance of the
proposed method through an experiment, and the conclusion is presented in Section 6.

Input signal
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R-peak
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Existing method [9,13,14]
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Initial vertex i i
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Fig. 1. Proposed algorithm flow.
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2. Electrocardiogram Signal

In theatrium and ventriculadepolarization and repolarizatigmocesseshe Rwave, QRS complex,
and Twave are measured in the ECG sigiidl]. The feature values of each waveform are obtained
using the intervals, segments, and amplitude difference between the fiducial points.

Fig. 2shows the composition of the fiducial points and feature values of the ECG signal.

R peak

RR interval
QRS comple
P-wave T-wave
Q-on S-off
R interval
ST segment
QRS duratiopy
QT interval

Fig. 2. The composition of fiducial points and features of the ECG signal.

Among fiducial points, the eak has the highest amplitude value. Thereforpedk detection is
relatively easy and can be accomplished accurately througippesissing correctiofi6, 17]. Based
on these characteristics, thepRak becomes a criteridar classifying beats, and is used for detecting
other fiducial points.

Each beat is classified through thepBak, and two methods are usedseparatéhe beats. The first
method divides the beats into the region of 275 ms before and 375 ms aftguehk[ER3]. This region
includes the Rvave, QRS complex, and-Wave, which are mainly used for ECG signal analysis
however,some data samples are missing. RiR interval is used to dividthe beatsn the second
method This minimizes the approximation error by approximatinglata. Fig.3 showsthe two beat
separationmethods

In this study, we separate th beats according to the RR interval as shown irB¢p.
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Fig. 3. The two beaseparation methods: (a) centering on theeldk and (b) RR interval.

3. Existing Linear Approximation

Fig. 4shows theoncept for linear approximation
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Fig. 4. lllustration of linear approximation: (a) the existing method, (b) linear approximation.

Detectionof the fiducial points such as the onset or offset is difficult because the fiducial points do
not have a maximum or minimuamplitudg€Fig.4(a). Additiondly, it is ambiguous to select a fiducial
point because the samples around fiducial points have similar feature values.

However thelinear approximation has the advantage of representing the fiducial point corresponding
to the boundary between the waveforegion witha large amplitude change and the baseline region
with a small amplitude change as a vertex because it represents a signbdwighticegFig. 4(b).
Additionally, it is possible to emphasize the feature values of the vertioeptsenting them as a few
vertices.

The input signal is divided into RR intervals based epelgk detection, andn independent linear
approximation is performed for each beat. The linear approximation proposed bydld8] proceeds
in three stageghe initial vertex selection, additional vertex selection, and error optimizationahde
colleagueq13, 14] alsoimproved dynamic programming used in the optimization bieged orthe
ECG signal 6s characteristics.

3.1Initial Vertex Selection

First, apoint with a large curvature is obtained as an initial vertex using curva&sexl linear
approximation[10]. The curvature is the amount by which a curve deviates from being a straight line
and it is calculated by using the included angle betwleethree pointas (1)

P L I T T T N
1 OO = ——= ——— —— o > @G D
BE @ &+t e &

Fig. 5shows the concept of the curvature calculation process and an example of the approximated
signal

In dynamic programming;omplexity increasesxponentially with the signal length and the number
of vertices. The initial vertex selection can reduce the complexity by dividing the RR interval into
several sulintervab.

3.2 Additional Vertex Selection

Curvaturebased linear approximatiosatisfactorilyexpresses a fiducial point as an initial vertex
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because it is a point with a |l arge cursmaliure.

may not becapturedas the initial vertex, as shown in QR8set and ®ffsetin Fig. 5b). To correct
this, additional vertices are obtained using sequential linear approximation for the inside of each initial
vertex[11].
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Fig. 5. The curvaturébased linear approximation: (a) concept of curvature and
(b) an example of thmethod.

Fig. 6 showsthe concept of the sequential linear approximation process and an example of the
approximated signal of Fig. 5(b).

Fig. 6(a) shows that a vertex is added when the error exceeds the thf@sfpthd the signal was
effectively appoximated as shown in Fig. 6(b).
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Fig. 6. Sequential linear approximation: (a) concept of method and
(b) approximation result of Fig. 5(b).

The approximation result depen@dn the number of vertices because dynamic programming
optimizes the vertices globallyhus the additional vertex selection appropriateyectshe number of
verticesfor dynamic programming.

3.3 Error optimization

Global error optimization calculates the costs for all cases, and detects the minimum case as an
optimization result. Therefore, the problem of optimizing the positiah eértices ford samples has a
complexity of0 0% . Dynamic programming[12] is a global optimization technique in which the
optimal path between two points is optimized as the global optimal path between any two points on the

global pathusi ng Bel | man 6 sTherpcursiva approgeh simplifiés @rid eoptimizes the

H
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problem, particularly using memoization to remember the computational results, which eliminates

redundant operations. Dynamic programming enables-$pgled global optimization but requires
additional memory for memoization, whiconsistingof cost and base mates. Thus the size of the
costand base matrices required for memoizatidn 80 .

Fig. 7 showsghe cost and base matrices used for memoization of dynamic programming.

~ L GoalofDP
NSNS . Cy(1,L)

|

Cost |
matrix |
|

Base
matrix

Fig. 7. The cost and base matrices, which are used for the memoization of dymagremming.

For a signal of length, the optimization of the partial signal fréfdo Qincluding theQuertices, is
recursively calculated as (2):

"7 o, "‘Q: 1o u' ey ‘7 + 14 ";- ’;’Q
O (2 0799[1%’01 Oq1 Qg + 0 U Q, (2

whereUodenotes the position of tH@,vertex, and whemis 0,6, Qis calculated as an error
between the input signal and the line connecting@hand’@,sample.In this study, we calculate the
error as the length of the perpendicular lineas show Fig. 6(a) because it is effective in
approximating the QRS complex with rapid amplitude change.

Fig. 8 showsghe results of optimization using the dynamic programming shown in Fig. 6(b).

The signal is well represented wittew vertices, and dynamic programminginimizes the
reconstructiorerror.
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Fig. 8. Optimization results of Fig. 6(b).

3.4 Optimization of Dynamic Programming
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Leeetal.[13lopti mi zed the <calculation of the <cost

characteristics, thereby improving the performance and enablirgmeabperation even in embedded
devices.

Fig. 9 showsheimprovementof the spatiabnd timecomplexity of the cost and base matrices used
in dynamic programming.

The following is adetaileddescription of each steyf Fig. 9.

Conventional dynamic programming Characteristics of ECG signal ‘ Time difference constrain Row-wise operation
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Fig. 9. Summary of the dynamic programming improvement process.

3.4.1Improvement based on characteristics of ECG signals
Characteristic 1

The cost and base matrices are symmetric because the approxienatioof the ECG signal is not
affected by the measurement direction.

Characteristic 2
The verticesd time information has a monotoni

signal is selected according to the passage of time.

Improvements

The first and last vertices are fixed as initial vertices corresponding to both ends of the input signal.

Therefore,Calways becon®l in &' of (2) and the existing cost matyii{1, ®.can be expressed
as6(QQ, as shown in (3)

u’?"‘:‘: 7 ey v 7, ‘-r +" 171’
6 QQ 190753*90 Q 1,0 + 6y U Q (3)

By expressingr(1, Pas6(QP, the cost matrix of the size 6f0%0) is reduced to the size of
0(00). Thus,6(0,0) is an optimized error value whénadditional vertices exist between the first
sample and thégdast sample and it represents the dynamic programmasglt Additionally, the
existing dynamic programming method optimizes by performing calculations in a recursidawop
method. However, improving the cost matrix fixes the area requiratidaalculation.Thus it can be
optimized through a bottomp operation withoua recursive approach.

3.4.2 Add limit of the time difference between vertices
Problem

a l

C

Many data bits are required to record the ver

measured for a long time.
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Improvement

The amount of information iminimized by representing the vertex information as a time difference
from the previous vertex. The maximum interval between the vertices is limited by the number of bits
(Ugq = 25 in this study usedto indicate the time difference between the vertities cost matrix
6(QQis calculated only when the interval between @gvertex and thé Q+ 1), vertex does not
exceed) 5o, asexpressed bi4):

6 TQTQ: d'@ 6 TQ 1,0"“9 + 60 l‘)"’QTQ (4)

Uy Uga VRV

The computation for thbase matrix is reducdzecause the time difference between the two vertices
is limited by0 g-¢.

3.4.3 Rowwise operation
Problem

The first row of the cost matrix is calculated based on the result of the base matrix operation.
Similarly, the O+ 1 sorow of the cost matrix is sequentially calculated using@gow of the cost
matri x and base matri x0s aviseopaaiqn cequidds a cpll tdaamenp o n e n
areabase matrix, making it difficult to improve the base matrix.

Improvement

The called base matrix is sequentigbymedcolumnby-column when each component of the cost
matrix is calculated in a colummise operation. That is, tHg,column of the base matrix issedonly
in the calculation of thecost matri® &, column Thus, thebase matrixj, U Qin (4) can be
expressed as (5):

5QQ=_ 4@  8Q Lig+8 g Upi Uge +1 )
Vgr1 Vga VUG

As shown in (5),he memoryusageof the base matrix’i;gfcan be overwritten b&éﬁl. Accordingly,
the size of the base matrix can be minimized fio(©?) to G (054) in a column unit vector.

4. Improved Linear Approximation

4.1 CompressionRatio-Based Approximation

For the input signal with lengtlh, CR of linear approximation withi;, verticescan be calculated as

(6):

" ODEAE QA S _0Qq + 0% (0Qy+ 0'Q)

CR= emcara g bx6G

(6)

where6'Q, denotes théits ofthef i r st vertexds ti mestidyé'@demws i on |
the threshold for the time difference between vertices (5 bits insthidy),and6'Q denotes the
resolution ofthes a mp amplitude (11 bits inhis study).

At this time[)5q (209Y= 32) restricts the time difference between vertjard we can obtain the
minimum number of vertice@ ;-¢) can be obtaineds {):
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. 0
Upe = 0 « o (7)
6

If the CRwheri;, = Uy -is less than thepecifiedCR, we guarante¢éhatthdinear approximation is
possible to satisfy a given CRtherwisethe CRbecomes the maximumhent, = 0.

As shown in (6), we caestimatethe CR by the number of verticatncethe other variableare
predefined constant values. Thus, canobtain the minimum number of vertice8 ) to satisfy a
specifiedCR by inverse calculatioas(8):

6Yx0x0Q 06Qq 0
(".’)"ﬁy*' 6"Q ' 65"@

®

0, = max

Additionally, the first vertexo6s tneeessanjornt fhoer nfaitri sotn ii rst
linear approximation, and thgi v e n i finst ventexcaihcidles with thepr evi ouslast nt er v
vertex.Thus the0, after the first interval is calculated as (9):

0Yx 0 x 6"Q 0

Op=max —————+1 ,
@ 0"Qy+ 6'Q

©)

Usa

The existinglinear approximation proceeds withe initial vertex selection using curvatubased
linear approximation, additional vertex selection using sequential linear approximation, and
optimization using dynamic programminbheinitial vertex sekction divides the RR interval to reduce
the number of computations, whereti®e additional vertex selection is usedstlectthe number of
verticesHowever,we improved dynamic programming to enable fale calculation withousplitting
the RR intervabased orthe initial vertex selection, and the additional vertex selection is unnecessary
because the number of verticesletermined bynverse calculation as shown in (9).

Therefore, we can simplify the process of linear approximation accordingrtm Gvo steps:(i)
selectingthe number of vertices using (9) afiij optimizing the vertices using dynamic programming.

4.2 PRDBased Approximation

Unlike CR,calculatingthe number of verticeequiredto satisfy the PRDs challenging. Theaumber
of vertices used for linear approximatishould be increasashtil the approximation satisfies the PRD.

In the iteration process, the cost matrix size gradually increases according to the number of vertices.

Fig. 10 shows the cost matrices according to timaber of vertices.

As shown in (7), we can obtain the minimum number of vert{dgsy). From0, = U, thely,
increases by 1 until the PR 0, optimized verticesatisfythe PRD condition(2% in thisstudy).

However, thisiteration causesproblems when implementeth low-capacity embedded devices
because the cost matixssize continuously increases, requiring dynammemory allocation.
Additionally, it is inefficient to calculate the new row component of the extended cost ratése
Leeetal. [13Joptimizedthe execution time by colummise bottoraup operation.

Thereforeinstead of expanding and recalculating the cost madeatedly the cost matri@ s r o w
sizavasexpandedy U o, andall essentiacomponentsvere calculatedsi , increases frond g ¢ to
0 e (Fig. 10(d).Then, the minimum number of optimal verticethat satisfy the gen PRDwas
determined.

The avelage CR of beadis about 10:1 to 12;1buit decreaseso about 3:1 to 5:when a sudden
amplitude change occurs dueanabnormal beat or noisdhus we setthe size ofthe extended cost
matrix 0 ¢to five timesthatof the 0 .
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Fig. 10. Thesize and calculation area of tbest matrk according to the number of vertices
(a) 0o Vvertices, (b)) + 1 vertices, (c); ¢, vertices, and (d) the calculation area required
from O -g to Uy o, Vertices.

5. Experiment

We experimentedising the Massachusetts Institute otfieologyBeth Israel Hospital Ahythmia
Databas€MIT-BIH ADB) provided byPhysioNet [19]. The MIFBIH ADB is a database composed of
48 records obtained about 3@inutedong with 360 Hz sampling frequency and 11 bits amplitude
resolution. In the experiment, lineapproximationsaccording to CR and PRD are performed,
respectivelyWe excludeddatum102, 104, 107, 113, and 2Which weremeasuredising apacemaker
andthe intervals in which Rpeak detection was abnormally performédditionally, we useda 1i 25
Hz bandpass filter for noise suppression, such asfi@guency baseline fluctuation and power supply
noise of 30 and 60 Hz.

5.1PRDfor Linear Approximation
To evaluate the experimental performance, we used PRIDas

-
Bg=105
BY_,0 ¢ 2

0'YO = x 100%, 0t =0 &  O[¢] (10

where0 [¢] andd[&] denote the input angkconstructed signal dhe compressed signal, respectively,
andn] denotes the PRD between two signals.

However, the input signal requirgemoving the baseline movement or the DC component for
reliable measurement because the average amplituthes ofput signal has a great influence on the
PRD. Therefore, we subtraitte average valug from the input signab [¢] as (1):
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OYo= 282198 ° o 100m, O¢ =0 & O[¢] 1)

B, e 0)?

This is important in the ECG signal because ¢htéire average of the signal can be removed as 0
through preprocessing, but the local average of baabmay not be Gzurther we proposeorrecing
the measuremertdf the errofQ¢]. The error isfrequentlymeasuredn a region where the amplitude
changesrapidly, such as in the QRS complex, despéag sufficiently approximatedecause th® &
measureshe amplitudedifferencebetweentwo signalsat the same timeThis results in unecessary
iterationsof compressiontherebylecreasinGR.

In this study, wecalculatethe error as the length of the perpendicular.Tihe time scale of the-axis
and amplitude scale of theaxis wasused asmV and secunits, respectively This is based on the
average amplitude of{geak and the RR intervaF aboutlmV and 1sec, respectiveljoreoverQ[¢]
using an error witlh[&€] has a low reliability for error measurement in the QRS compleich has
large amplitude change Consequentlywe proposedisingthe length of the perpendicular line as the
errorOf¢]asexpressed if12):

oL Upt @Q x 1 04t G+l Uu¢ x 058 6 Q
€ =

- - - - 12
GOl 02+ vl gQ°’ ()

0t v G Qa0 1

whered ¢ = Uy¢ ,04-&] denotes thégosampleof the input signaincludingthe interval between
the Qg vertex and Q+ 1, verticeswhich representsi{ Q= ¢ Q@[Q and o+ 1] =
G O 1,6+ 1] , respectively.

Thus,we can obtaithe PRDas (13)

0 yer 2
By_,C*¢

0YO= —— — x 100% 13
By_,0¢ 02 ’ a3

The quality of PRD is rateds ®%i 2%, implying very good, and %i 9%, implying good [20].1t is
sufficient to compress the threshold of PRD to 9%, the upper limit of the good range lzesamnit
rhythm or shape is repeated in the ECG signal. Howdvisrstudy limitsthe threshold of the PRD to
2% to provide more accurate diagnosis informati@mnce the abnormal beat contains important
information for arrhythmia diagnosis.

5.2CompressionRatio-Based Approximation

Weselectedhe number olertices according to thgiven CR using (9) Fig. 11 shows the result of
thelinear approximatiomf MIT-BIH ADB recordswhen thegivenCR is 10:1.

Fig. 11represents the average and standard deviation of the PRD for each ibjetivalrecord
Additionally, the overall averagef the PRDs 0.78%, implying an excellenperformance
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Fig. 11.PRD distribution of linear approximation for each record of MjIIH ADB.

5.3PRD-Based Approximation

In the proposed method, we generate the expanded cost matrix accordingpecifiedPRD and
then search the mber of vertices thagatisfy it.In this study, thespecifiedPRD is 2% the upper limit
of thevery good rang€&ig. 12 shows the result dhe linear approximatiowhen thespecifiedPRD is
2%.

As shown in Figl2,we confirmeda high CR on average (12.7:Particularly the simpler the signal
shape and the wider the RiRerval, the higher the signal compression efficiency (20.73:1 maximum).
In contrast, the higher th&ignalto-noise ratio(SNR) and the shorter thRR interval, the lowethe
signal compression efficiency (2.98:1 minimum).

20\\\IIII\\IIII\\IIII\\IIII\\IIII\\IIII\\IIII
o CR

_______ MAEFLESERC. &

: T
o
—o—
o
Lo

Compression ratio
)
T

W
T
|

Fig. 12.CR distribution of linear approximation for each record of NBIH ADB.

Fig. 13 comparegdatum 214 with the highest avera@® (16.6:1) anddatum 222 with thdowest
average CR (6.9:1).

As shown in Fig13(a) the simpler the signal, the higher the CR due to sufficient approximation with
few vertices. However, in the case of Fig. 13f{m)ymerousverticesarerequired due to the high signal
to noise ratio, resuitg in a sharp decrease in CR.

Table 1 showshe comparison result of CR and PRD with conventional algorithms

By expressing thsignal withfew vertices, the proposed method not only facilitates the detection of
the fiducial point, but also confirms thaet CR is not inferior teonventionamethods.
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@ (b)
Fig. 13.The comparison of CR: (aatum 214 and (bjatum 222.

Table 1.Comparison of CRndPRDwith conventional algorithms

Algorithm CR PRD (%)

AZTEC [21] 10 28
Turning point [22] 2 5.3
Coordinatereductiontime-encoding system [23] 4.8
Fourier aescriptors [24] 7.4 7
Wavelet tansform [25] 8 2.6
Wavelet & SPIHT [26] 8 1.8
B-spline approximation [27] 9.29 1.86
Proposed method 12.7 2

10 0.78

6. Conclusion

In thisstudy, we improved the linear approximation algorithm to enablapressiorsignalbased on
specifiedCR or PRD. In the case of compression accordinthéspecifiedCR of 10:1, the average
PRD was 0.7%, which was in the very gooBRD range.Further compressioibased orthe specified
PRDof 2%, which was the upper limit of the very good range PBihibiteda high CRof 12.7:1 on
average.

The proposed method simplifies the algorithm becausenibvesthe initial and additional vertex
selection ste@and by inversely calculating the amber of vertices according to tlggven CR or by
sufficiently expanding the cost matrix and searching the minimum number of vertices that satisfy the
given PRD Particularly stable reatime processing is possible becawsch interval measures CR and
PRD independently. However, in the case of an interval with a high SNR, unnecessary vertices are
required, which significantly lowers the CRhe local noise suppression filter according to interval
may further improve the R in future studies. Furthemve expected that CR can be improved by
studying a method that can compress the normalspedtich occupymost of the signal andre
repeated periodically.
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